

Jenna Veens, MPT 2015 Western University

0

What is it?

- Extracorporeal = outside body¹
- Shockwave = intense, short energy wave travelling faster than speed of sound¹
- Well-controlled mechanical insult to tissue²
- ESWT was established based on the principles of lithotripsy¹
 - Technology that uses acoustic sound waves to break up kidney stones

- Mechanical pressure increases cell membrane permeability¹
- Acoustic waves cause small capillaries in tissue to rupture, which increases growth factors to the area³

- Neovascularization or new blood supply^{1,3}
 - More blood = more oxygen = better healing
- Stimulates fibroblasts for connective tissue healing^{1,3}
 - Tendon, ligament, fascia

- Stimulates osteoblasts for healing and new bone production¹
- Destroys calcifications^{3,4}

- Decreases pain
 - Hyperstimulation anesthesia^{1,4,5,6}
 - Reduces effects of Substance P neurotransmitter³
 - Gate-control theory^{1,5,6}

Gate Control Theory

 Activation of A-Beta fibers inhibit transmission of pain signals to brain^{5,6}

Types²

- Electrohydraulic
- Electromagnetic
- Piezoelectric
- Radial or Electropneumatic
 - Requires no imaging or additional treatments such as ultrasound or local anesthetic⁵

Mechanics⁵

- Radial wave pulses are produced by compressed air in the cylinder of the hand piece
- A projectile in the hand piece generates kinetic energy
- This kinetic energy is transferred into acoustic energy which is sent into nearby tissues
- Depth of energy penetration is approximately 0-6 cm

Terminology

- Energy Flux Density⁷
 - Degree of energy transmitted to the tissues
 - Low (<0.08 mJ/mm²)
 - Medium (0.08 to 0.28 mJ/mm²)
 - High (0.28 to 0.60mJ/mm²)
- Pulses Per Dose⁷
 - Ranges from 1000 to 3000
 - Several doses may be given over course of a treatment

Conditions Treated with ESWT

- Plantar Fasciitis
- Achilles Tendinopathy
- Epicondylitis
- Calcific Tendinopathy of the Shoulder
- Patellar Tendinopathy
- Post-Traumatic Myositis Ossificans
- Non-Union Fractures
- Trigger Points
- Frozen Shoulder
- Dupuytren's Contracture
- DeQuervain Syndrome
- And more...

Evidence: Calcific Tendinopathy

- High-Energy Extracorporeal Shock-Wave Therapy for Treating Chronic Calcific Tendinitis of the Shoulder⁷
 - Systematic review
 - Results: high energy ESWT was effective for treating calcific tendinitis
 - Reduced pain, improved function, resorption of calcifications
 - Low energy ESWT is less effective
 - Regardless of energy level, ESWT is not effective in treating non-calcific tendinitis

(Bannuru et al., 2014)

- Extracorporeal shockwave therapy versus placebo for treatment of chronic proximal plantar fasciitis: results of a randomized, placebo-controlled, double-blinded, multicenter intervention trial⁸
 - Single treatment of EWST (n=115) vs. placebo (n=57) with 3 month to 1 year follow-up
 - All patients had previously failed at least 2 pharmacologic treatments AND at least 2 nonpharmacologic treatments
 - No use of corticosteroid injections, NSAIDs, or physical therapy during study

- Outcome Measures
 - Blind assessor's objective assessment of heel pain
 - Participant's subjective assessment of heel pain (VAS)

Results

- Significantly greater reduction of objective heel pain in treatment group (mean ↓ of 2.51) vs. placebo group (mean ↓ of 1.57) (P<0.001)
- Significantly greater reduction of subjective heel pain in treatment group (mean ↓ of 3.39) vs. placebo group (mean ↓ of 1.78) (P<0.001)
- Conclusion
 - Effective for heel pain reduction in patients with recalcitrant plantar fasciitis

- Extracorporeal shock wave for chronic proximal plantar fasciitis: 225 patients with results and outcome predictors⁹
 - Retrospective study
 - All subjects had plantar fasciitis > 6 months with failure to respond to at least 5 conservative modalities
 - Multivariate analysis performed to determine outcome predictors

(Chuckpaiwong, Berkson & Theodore, 2009)

- Outcome Measures
 - Health questionnaire, Roles and Maudsley scores, American Orthopaedic Foot and Ankle Society scores
- Results
 - Success rates of 70.7% at 3 months and 77.2% at 12 months
 - Previous cortisone injections, BMI, duration of symptoms, bilateral symptoms, and plantar fascia thickness did NOT influence outcomes
 - Diabetes, psychological issues, and older age NEGATIVELY influenced outcomes

Evidence: Achilles Tendinopathy

- The effectiveness of extracorporeal shock wave therapy in lower limb tendinopathy: a systematic review¹⁰
 - 11 studies reviewed
 - ESWT produces greater short-term and long-term improvements in pain function compared to other non-operative treatments (rest, footwear modification, NSAIDs, stretching, or strengthening)
 - One study demonstrated that eccentric loading with ESWT is superior to eccentric loading alone
 - Greater improvements in pain and function

Evidence: Patellar Tendinopathy

- The effectiveness of extracorporeal shock wave therapy in lower limb tendinopathy: a systematic review¹⁰
 - 7 studies reviewed, mixed results
 - One study showed no difference between ESWT and placebo
 - Two long-term studies showed ESWT to be comparable with patellar tenotomy surgery and better than non-operative treatments (NSAIDs, physical therapy, exercise, knee strap, and modification of activity)

• Greater improvements in pain and function

Evidence: Epicondylitis

- Systematic review of the efficacy and safety of shock wave therapy for lateral elbow pain¹¹
 - 9 placebo-controlled trials + 1 ESWT vs. steroid injection
 - Conflicting results
 - Three trials in favour of ESWT, four trials reported no benefit
 - Steroid injection more effective than ESWT
 - "ESWT provides little or no benefits in terms of pain and function in lateral elbow pain"

Parameters

- No consensus in literature
- See Chattanooga Guidelines⁵

Is It Safe?⁵

- Mild side effects reported in studies
- Side effects usually come and go within 3 to 5 days
 - Redness
 - Swelling
 - Pain
 - Hematoma
 - Petechiae (red spots)

Contraindications⁴

- Bleeding conditions
- Pacemakers
- Medications that prolong blood clotting
- Open growth plates (children)
- Pregnancy
- Acute injuries

Conclusions

- EWST is often a last resort treatment once other less expensive treatments have failed (ie. manual therapy, U/S)
- Best results when used in conjunction with exercise
 - Not a stand-alone modality!
- Positive findings for plantar fasciitis, patellar tendinopathy, and Achilles tendinopathy
- Mixed results for calcific tendinopathy of the shoulder and lateral epicondylitis

References

- Shockwave Therapy BC. (n.d.). General information about extracorporeal shockwave therapy. Retrieved from http://www.shockwavetherapy.ca/about_eswt.htm#How_ effective_is_Focused_ESWT_0
- 2. Gallo, J. (2013). Shockwave therapy for treatment of chronic soft-tissue lesions: an emerging technology worth a close look. *Physical Therapy Products, 24*(2), 8-10.
- 3. BTL. (2014). *Medical effects.* Retrieved from http://www.shockwavetherapy.eu/shockwavetherapy/menu-left/-/medical-effects/
- Nolan, T.P. & Michlovitz, S.L. (2012). Alternative modalities for pain and tissue healing. *Modalities for therapeutic intervention*, 5th ed (389-402). Davis Company.
- 5. DJO Global. (2012). *Chattanooga RPW shockwave therapy clinical guide*. Retrieved from http://www.htherapy.co.za/user_images/shockwave/Intele ct_RPW_Clinical_Guide_COMPLETE_LR.pdf

References

- 6. van der Worp, H., van den Akker-Scheek, I., van Schie, H., Zwerver, J. (2013). ESWT for tendinopathy: technology and clinical implications. *Knee Surg Sports Traumatol Arthrosc, 21,* 1451-1458. doi:10.1007/s00167-012-2009-3
- Bannuru, R., Flavin, N., Vaysbrot, E., Harvey, E., McAlindon, T. (2014). High-energy extracorporeal shock-wave therapy for treating chronic calcific tendinitis of the shoulder. *Annals of Internal Medicine*, *160*, 542-549.
- 8. Malay, D., Pressman, M., Assili, A., Kline, J., York, S., Buren, B., Heyman, E., Borowsky, P., LeMay, C. (2006). Extracorporeal shockwave therapy versus placebo for treatment of chronic proximal plantar fasciitis: results of a randomized, placebo-controlled, double-blinded, multicenter intervention trial. *Journal of Foot and Ankle Surgery*, 45(4), 196-210.
- 9. Chuckpaiwong, B., Berkson, E., Theodore, G. (2009). Extracorporeal shock wave for chronic proximal plantar fasciitis: 225 patients with results and outcome predictors. *Journal of Foot and Ankle Surgery, 48*(2), 148-155.

References

- Mani-Babu, S., Morrissey, D., Waugh, C., Screen, H., Barton, C. (2014). The effectiveness of extracorporeal shock wave therapy in lower limb tendinopathy: a systematic review. *American Journal of Sports Medicine*. DOI:10.1177/0363546514531911
- Buchbinder, R., Green, S., Youd, J., Assendelft, W., Barnsley, L., Smidt, N. (2006). Systematic review of the efficacy and safety of shock wave therapy for lateral elbow pain. *Journal* of Rheumatology, 33(7), 1351-1363.

Images

- Chattanooga Shock Wave Machine (slide 1): http://www.physiosupplies.eu/media/catalog/product/cache/2/i mage/800x800/5e06319eda06f020e43594a9c230972d/2/_/2_4/ intelect-rpw-shockwave-31.1386614068.jpg
- Treatment Sites (slide 1): http://www.flamanphysiotherapy.com/services/radialshockwave-therapy
- Effects on Tissue (slide 4): http://www.shockwavetherapy.eu/shockwave-therapy/menuleft/-/medical-effects/
- Resolution of Calcifications (slide 5): http://www.kopi.ca/publisher/articleview/?PHXSESSID=8234bec 68e07c0a23aef53421b6b0e67&/1/frmArticleID/227/
- 5. Gate Control Theory (slide 7): Adapted from lecture given by Dave Humphries in Introduction to Athletic Injuries (Kin 2236 @ Western University, 2013)
- Intelect RPW Screen (Slide 20): http://international.chattgroup.com/products/intelectr-rpwshockwave